用于干切削的新型刀具实验 |
|
日期:2007-8-23 21:12:18 人气:57 [大 中 小] |
|
|
硬/硬复合涂层材料常用B4C/SiC、HfC/SiC和HfC/B4C,这种表面涂层可为刀具提供高温氧化保护。此外,在切削加工中发现,碳化物/金属复合涂层处会产生定向金属氧化。当TiAlN中的Al氧化生成氧化铝时,可改善TiN涂层的性能,使其导热系数减小,抗氧化扩散的保护能力提高。Al与硬度更高(与TiN相比)的B4C、HfC、SiC等碳化物组成复合涂层,可更进一步提高涂层性能。此外,具有较小摩擦系数的氧化物膜可减少刀具与工件界面处产生的切削热。能形成这种低摩擦系数的氧化物保护膜的金属有Al、Ta、Mo和W。例如在陶瓷表面离子注入混合的Ti和Ni而形成的表面具有极小的摩擦系数(0.06~0.09);由Zr的氧化物形成的氧化锆表面摩擦系数更小,且具有优异的抗热及散热性能。层状结晶的二硫化物也具有较小的摩擦系数,如二硫化钼(MoS2)是常用的固体润滑剂,但它在空气中加热到350~400℃时即显著氧化,如将MoS2与耐热金属Mo组合成复合涂层MoS2/Mo,则其耐热能力可明显提高。其它一些耐热金属的二硫化物(如WS2、TaS2)在空气中比MoS2具有更好的稳定性,如WS2在600~650℃时才氧化,而TaS2在空气中加热到750℃时仍保持稳定。因此,由耐热金属的二硫化物与耐热金属组合的复合涂层(如WS2/W和TaS2/Ta)具有优异的抗高温性能。
2. 涂覆工艺原理
纳米涂层的涂覆可采用先进的封闭场不平衡磁溅射法(CFUMS)。该方法与普通磁溅射法相比,具有效率高、功率消耗小、溅射室压力小、温度低、靶到工件距离大等优点,获得的涂层更纯净、更致密、性能更一致。此外,试验证明,CFUMS法生产重复性好,涂层具有更高的粘结强度,摩擦系数恒定,因而在干切削中具有更长的使用寿命。
磁源(靶)置于真空室内壁上,被涂刀具置于转鼓上,将氩气通入真空室中。根据涂层材料是非导体(如陶瓷氧化物)或导体(如金属),分别用RF和DC电源进行磁化产生等离子。当沉积多层薄膜时需要两种不同材料的等离子体,这时则可采用两个靶,当转鼓转一整转,即可沉积一层双材料层。根据涂层所需层厚,可确定所需双材料层的层数,从而确定转鼓转动转数。每一层涂层的层厚则可通过每个靶的功率、转鼓的转速以及靶材料的溅射特性来控制。
获得的涂层质量可通过多种方法进行检查。常用的方法是用针式轮廓测量仪测量涂层总厚度;用x射线衍射法测量单层涂层或双材料层的厚度;用纳米硬度测量法测量涂层硬度。还可采用光学显微镜、扫描电镜或射线电子显微镜测量涂层的微观形貌。
1. 切削试验
有人采用CFUMS涂覆工艺在硬质合金刀具和HSS钻头上涂覆B4C/W多层纳米涂层(100层双材料层,每层厚度B4C为13Å,W为18Å),然后分别采用未涂层刀具、普通单涂层(TiAlN)刀具、三涂层(TiC/TiCN/TiN和TiC/Al2O3/TiN)刀具和B4C/W多层纳米涂层刀具在105m/min的切削速度下对中碳钢进行了干切削对比试验。试验结果表明,纳米涂层刀具的后刀面磨损量比未涂层刀具和常用的TiC/Al2O3/TiN三涂层刀具大大减小。此外,随着切削时间的延长,纳米涂层刀具的切削力与未涂层刀具、TiC/TiCN/TiN三涂层刀具和TiAlN涂层刀具相比也显著减小。
还有人采用固体润滑剂多层纳米涂层(MoS/Mo双材料涂层,共400层,总厚度3.2µm,每层厚80Å)HSS钻头与未涂层钻头进行了干切削对比试验。工件材料为Ti-6Al-4V合金,该材料导热系数低,切削时易生成积屑瘤,加工硬化现象严重,属难加工材料。试验用钻头直径为9.5mm,名义钻削速度2200r/min。试验结果表明,测得的钻削力和钻头磨损量与进给量呈函数关系。未涂层钻头钻进时,钻削力急剧增大,最后导致钻头卡入工件中。而多层纳米涂层钻头钻进时的钻削力减小约33%,在相同的钻削时间内钻削顺利,未发生钻头卡住现象或其它故障,钻削性能显著优于未涂层钻头。
切削试验表明,纳米涂层刀具是适用于干切削的理想刀具。 |
|
我有问题,我要进入论坛 |
出处:本站原创 作者:佚名 | |
|