用于干切削的新型刀具实验 |
|
日期:2007-8-23 21:12:18 人气:57 [大 中 小] |
|
|
吴希让
一、前 言
随着人类对资源和环境保护的日益重视,“清洁化生产”的概念已逐渐引起人们关注,并成为未来制造业的重要发展方向之一。
在金属切削加工中,切削液具有冷却、润滑、清洗、排屑、防锈等功能,对延长刀具寿命,保证加工质量起着重要作用。但是,切削液的广泛使用,不但浪费大量资源,增加了加工成本,而且污染环境,甚至危害工人健康。切削废液的处理已成为现代制造业的一大难题。
干切削是消除切削液污染,实现清洁化生产的有效途径。干切削技术的发展在很大程度上要依赖于新型刀具的开发与应用。下面介绍两种国外新近开发的适用于干切削的新型刀具。
二、新型陶瓷刀具
陶瓷刀具由于具有高耐热性和良好的化学稳定性,非常适合用于干切削。但陶瓷材料脆性大、强度及韧性差等固有物理特性却在很大程度上限制了它在干切削中的应用。新型陶瓷材料的开发较好地解决了这一难题。
1.新型氧化铝陶瓷刀片
提高陶瓷材料强度及韧性最有效的方法是减小陶瓷晶粒尺寸,提高材料纯度。
在陶瓷刀片制造过程中,特别在高温烧结时,存在晶粒长大现象。为遏制晶粒长大,常在陶瓷粉末中加入MgO作为抑制剂,但该氧化物烧结后形成玻璃相,沉积于晶界处,使晶界分离,从而降低了晶界强度,且易产生晶间碎裂。如能在低温下烧结陶瓷,则无须添加抑制剂,就可避免上述现象,提高陶瓷刀片性能。
最近,日本学者开发了一种微细颗粒(0.22µm)、高纯度(99.99%)的新型氧化铝陶瓷粉末用于制造陶瓷刀片。这种微细粉末具有很大的比表面积(15.1m²/g),压实时具有极大的表面能,在此能量作用下,烧结时所需温度明显降低,在1230℃时即可充分烧结,这就意味着烧结时无须添加抑制剂,从而使晶界处无杂质存在。
制造这种陶瓷刀片时可采用如图1所示的高速离心压实方法,在10-20×10³G的强大离心力作用下压实坯料,经干燥后在1230℃的温度下烧结1.5小时即可获得成品。
2.切削试验
分别采用HU刀片和AW刀片对灰铸铁和中碳钢进行了车削和铣削的干切削对比试验,试验结果表明,晶粒更细、晶界更纯的HU陶瓷刀片在干切削中具有更为优异的切削性能。
(1) 灰铸铁车削试验
切削用量为:v=300m/min,f=0.39mm/r,ap=1.0mm,干切削。图2a、b分别为HU刀片与AW刀
HU刀片的耐磨性明显优于AW刀片。通过对干切削5分钟后的刀片形态进行SEM检查,结果显示HU刀片磨损很小,而AW刀片磨损面相当粗糙。这是因为普通陶瓷刀片晶粒较大,磨损主要由晶间碎裂造成;而新型陶瓷刀片不仅硬度高,而且晶界无杂质,粘结强度好,磨损形式主要为穿晶碎裂。
(2)中碳钢车削试验
切削用量为:v=200m/min,f=0.21mm/r,ap=1mm和1.5mm,干切削。
当切削深度较小时(ap=1mm),HU刀片耐磨性极好;当切削深度较大时(ap=1.5mm),切削1分钟后AW刀片破碎失效,而HU刀片切削5分钟后仍可继续使用。对磨损后的刀片进行SEM检查表明,AW刀片的磨损由破碎造成,而HU刀片的磨损是逐渐形成的,没有明显的破碎现象。
(3)中碳钢铣削试验
在相同切削条件下对两种刀片进行了3次面铣中碳的干切削试验,每次试验结果用P(无破损)和F(破损)表示。以某一进给量切削工件时,若达到规定的切削长度(480m)而刀片未出现破损,则记作P,然后继续进行更大进给量的试验。
对切削4分钟后的刀片进行的SEM检查表明,HU刀片干铣削中碳钢时的磨损量很小,磨损表面形态与车削类似。 切削试验表明,晶粒更细、晶界更纯的新型氧化铝陶瓷刀片具有良好的抗机械冲击和热冲击性能以及极高的耐磨性和抗破损能力,是用于干切削的理想刀具。
三、纳米涂层刀具
为了改善刀具的切削性能,新的刀具涂层材料及涂覆方法层出不穷,由美国学者开发的纳米涂层(Nanocoatings)是其中最成功的一种。这种涂层方法可采用多种涂层材料的不同组合(如金属/金属组合、金属/陶瓷组合、陶瓷/陶瓷组合、固体润滑剂/金属组合等),以满足不同的功能和性能要求。设计合理的纳米涂层可使刀具的硬度和韧性显著增加,使其具有优异的抗摩擦磨损及自润滑性能,十分适合用于干切削。
1. 涂层种类及性能
由摩擦、润滑和磨损的观点看,硬质合金刀具的多层纳米涂层可分为四类:(1)硬/硬组合:碳化物、硼化物、氮化物、氧化物之间的组合,如B4C/SiC、B4C/HfC、TiC/TiB2、TiN/TiB2、TiC/TiN等。(2)硬/软组合:碳化物/金属组合,如B4C/W、SiC/Al、SiC/W、SiC/Ti等。(3)软/软组合:金属/金属组合,如Ni/Cu等。(4)具有润滑性能的软/软组合:固体润滑剂/金属组合,如MoS2/Mo、WS2/W、TaS2/Ta、MoS2/Al-MO等。这些复合涂层每层由两种材料组合而成,厚度仅为几纳米。根据切削性能需要及涂层性质,可交互叠加涂覆上百层,总厚度可达2~5µm。 |
|
我有问题,我要进入论坛 |
出处:本站原创 作者:佚名 | |
|