将制备ZrO2粉体作为了研究重点 |
|
日期:2007-6-1 9:19:02 人气:76 [大 中 小] |
|
|
正是由于颗粒粘连和长大才导致比表面积的减小。按照双球模型的烧结理论,在比表面积的减少量△S与热处理时间t之间存在着一个函数关系如下式
r=kt 式中,S0为初始比表面积;△S是处理t时间后的比表面积的减少量;γ和k是为两个相关常数,利用表中的相应数据可以很容易地计算得 600,且1000℃下的是k值分别为0.023和0.045。而k本身具有速度常数性质,它可以表示如下式
lnk=A+ 式中,A为一常数;R,T及Q则分别为气体常数(8.31J/rnol·K),温度和该过程的激活能。同样代入表2的相关数据,可以求得Q=15492.4J/mol)。这一数值大大低于通常氧化物陶瓷的烧结过程激活能(~500kj/mol)。造成这一偏差的可能原因除了模型比较粗略而造成的误差外,主要在于:
(1)这里所处理的粉体是纳米粉而不是通常的粗粉。需知颗粒越大,烧结过程越难。 (2)这里所讨论的是纳米粉的长大问题而不是要达到材料致密化的烧结过程。其根本原因是:物质的传递是要借助于扩散过程来进行的,而扩散可分为体积扩散、界面扩散及表面扩散,它们各自的扩散系数之比:DV:Dg:Ds=10-14:10-10:10-7。这就可以很好理解纳米粉易烧结更易长大这一现象了。
2.3 微观结构
纯ZrO2材料在1170℃以下,其热力学稳定态是单斜晶系即m-ZrO2,t-ZrO2只是在1170~2370℃范围内才是热力学稳定的。从各样品的XRD谱得知,虽然它们的主相均为m-ZrO2飞,但凡是处理温度在600℃以下者全部都有t-ZrO2存在,在 800℃下处理3h也仍然含 5%的 t一ZrO2,只是在800℃下处理9h及1000℃下处理3h以上t-ZrO2才消失。对此现象只能从热力学观点来解释。按热力学理论,体系总自由能应为体积自由能与表面能之和
G=Gv+Gs= πr3g+4πr3б (7) 发生相变的驱动力△G=△Gv十△Gs= πr3g+4πr3б
由于t-ZrO2的表面能小于m-ZrO2,因此即使在m—ZrO2稳定的低温下也存在一个临界半径r0,对于小于此半径的ZrO2颗粒,满足img border=0 src=http://www.51base.com/uploadfiles/image/10080/TXT-200621253924942.gif>πr3△gt+4πr3△бt < πr3△gm+4πr3△бm (8)
式中,g t,бt及gm,бm分别为t-ZrO2和m-ZrO2的体积自由能和表面自由能。 R.C.Garvie,等计算出这一临界粒径 ro≈30nm。本文作者在解释喷雾热解ZrO2粉的相成因时也曾指出过,高温相(t,C-ZrO2)更接近无定形,而所有这些粉粒开始都有是从无定形出发的,因此可以认为它们在热处理过程中会首先形成t-ZrO2,随着热处理温度的提高和时间的延长,一方面粒子长得越来越大,另一方面ZrO2分子获得越来越大的动能,于是越来越多的ZrO2粉粒由t相转变为m相。800℃下9h时没有t— ZrO2,说明此时才完成这一转变。纳米 ZrO2粉体中t-ZrO2含量与热处理的关系可以参见图4。
3结论
(1)用共沉淀工艺合成并经适当的热处理可以得到一次粒子为等轴状的纳米ZrO2粉体。 (2)纳米ZrO2粉的比表面积随处理温度的升高和时间的延长而减小。计算表明,这一过程的激法能比一般粗粉烧结过程的激活能要低得多,说明纳米粉的团聚过程很易发生。 (3)以此工艺制备的纯ZrO2纳米粉通常含有单斜相和四方相两种微观结构,其t-ZrO2含量与热处理温度和时间有关。
|
|
我有问题,我要进入论坛 |
出处:本站原创 作者:佚名 | |
|