图3
尺寸设计主要涉及的是强度、刚度设计、定位要求等具体的工程背景信息,需要有一定的环境输入信息。但这时的环境输入信息,如传递功率、轴的转速、轴的材料等均为确定的,不存在信息的无序到有序的转化过程,因此本文着重要阐述的是如何实现尺寸设计阶段中自组织信息的生成。 在轴的强度设计中,除了一些环境信息(如功率、转速、齿轮压力角、螺旋角等)是完全人工输入之外,其余如传入传出点位置、支撑点位置等信息均可通过链表的搜索自组织地形成。一般轴类零件中(不考虑带轮等其它情况),力、力矩的传入与传出总是与齿轮联系的,即与子图形单元中键槽密切相关。基于图形单元的链表结构储存形式,易得含有键槽子图形单元的轴段,于是系统自动将该图形单元中键槽的中点位置作为该轴力与力矩的传入或传出点。再如支撑点的位置,则是在指定了实现轴肩定位功能的轴段之后,根据用户所选的轴承型号,加以一定的运算得到相应的点位置。 轴强度设计的结果往往是表现为危险轴段的轴径大小,即轴径大小是强度约束的结果,而轴径大小本身又是轴段图形单元信息存储结构中的一部分。从而实现了图形单元与工程环境之间的循环过程:例图生成的标准尺寸零件图如图4所示,对生成的标准尺寸图进一步作工艺化处理,尺寸标注,尺寸公差和形位公差标注就形成图2的零件图。 图4
7 结论 本文的图形单元技术是基于AUTOCAD的ADS用BORLAND C++二次开发的,在486以上微机WINDOWS32以上的WINDOWS操作系统上均可运行,本系统已经做为我单位温州冲剪机床CAD和富阳起重机CAD两个项目的一个模块,经过单位使用反映良好,为CAD向智能化发展奠定基础。 应用AUTOCAD的ADS扩展实体链表结构实现了具有先进性和智能性的图形单元的自组织,经过实践证明,此方法是合理的和可靠的。 通过图形单元技术的开发,克服了以往点、直线和圆弧等基本几何图素不具有工程语义的缺点。图形单元能够很好地表达设计师的思想,使得绘图和产品设计在更高层次上进行,提高了绘图和设计效率。 |