采用机电一体化的臂体功能模块,以搭“积木”方式组装的便携式机器人,完成焊接生产作业时,对焊接工具的位置和姿态的控制,其实质上就是对步进电机转轴转动角度和转动速度的协调控制,由步进电机基本原理和公式: θ=360/Z 式中:θ-步距角 Z-步进电机转子齿数 可知,每输入一个驱动脉冲,电机转轴步进一个步距角增量,因此: a、步进电机转轴的回转角度与输入的脉冲数成正比; b、步进电机转轴的转速决定于输入脉冲的频率。 步进电机能将输入脉冲转换为旋转运动,它本身所特有的高精度、无漂移、无累计误差等优点,使它成为电机一体化产品中,唯一能使用开环控制技术的伺服和执行元件。很显然,对便携式弧焊机器人的运动控制,就是对步进电机输入脉冲数量和脉冲频率的协调控制。 4 便携式机器人控制软件开发 机器人控制软件的开发方式,直接制约着机器人的应用和推广,快速、简便的开发方式不仅促进机器人的应用和推广,而且直接决定机器人完成生产作业的柔性。便携式弧焊机器人是面向生产工人作为智能工具使用,必须简化控制软件开发方法。 为满足实时控制的要求,采用汇编语言编程;为适图 3 控制程序开发界面 应便携式弧焊机器人结构改变或生产作业工艺改进后,快速开发控制程序的需要,以Visual Basic语言开发了“便携式机器人CAD系统”软件,使控制软件的开发在“便携式机器人CAD系统”支持下进行[3],开发界面如图 3所示。在可视化的人机界面输入各功能模块的有关参数,反复调用各级菜单,优化弧焊机器人结构参数;直观地观察、比较机器人仿真图形和计算的各类数据;以图形仿真方式,仿真弧焊机器人的生产作业运动和轨迹,在图形仿真的同时自动完成控制程序设计,下载到机器人控制器内,以此简化控制程序的开发。在“便携式机器人CAD系统”支持下开发控制程序,只需用鼠标点击相应的菜单,而所有涉及机器人插补算法、逆向运动学算法等机器人专业知识和技术,都由“便携式机器人CAD系统”软件处理。这种图形仿真开发控制软件的方式,使便携式弧焊机器人能适应多种焊接生产作业,使焊接生产作业柔性化。以图形仿真方式开发控制软件,就如同使用Windows图形界面操作微型计算机一样,使不熟悉机器人硬件的人,可以迅速、简便地开发出机器人
控制软件,促进机器人的应用和推广。 便携式弧焊机器人控制系统上电复位后,固化的控制软件开始运行,系统初始化后: a、控制软件读取大臂、小臂、手腕的转动角度值,计算后调用步进电机正转、反转、加速、减速子程序,向相应I/O端口输出连续的系列脉冲信号,控制大臂、小臂、手腕转动; b、控制软件读入采集的标征作业状态的数值,并将数值与从指定地址读取的目标值进行比较,依据差值调用大臂、小臂、手腕位置、姿态补偿子程序,对大臂、小臂、手腕的转动进行补偿; c、由于外界干扰,便携式弧焊机器人的焊接工具偏离或远离预定轨迹时,控制软件读入采集的标征作业状态的数值,并将数值与从指定地址读取的目标值进行比较,依据差值调用大臂、小臂、手腕加、减速补偿子程序,对大臂、小臂、手腕进行加减速补偿。 4 结束语 依托MC68HC908GP32 微处理器芯片的高性能,开发了价格便宜,体积小、重量轻、便于灵活移动,控制软件开发简便的便携式弧焊机器人。通过样机实验表明,便携式弧焊机器人的运动功能和控制精度,满足了电弧焊自动焊接要求。而该机结构紧凑,重量轻,便于携带和灵活移动,一机多用,具有可开发性,开发控制软件简便,且生产成本低廉,实质上使该机成了一个灵巧的自动焊接工具。在操作工人的操作下进行焊接机型功能组合,控制程序开发,自动焊接前定位“清零”等工作。使该机只是代替人去完成繁重的、有害的焊接操作,去提高焊接质量,而不是完全代替人的劳动。在我国这样一个人口众多的国家,降低生产 |